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c Institute of Data Science (IDS), Maastricht University, the Netherlands 
d Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Distributed learning 
Sequential learning 
Rare disease 
Medical data privacy 

A B S T R A C T   

Background: Artificial intelligence (AI) typically requires a significant amount of high-quality data to build 
reliable models, where gathering enough data within a single institution can be particularly challenging. In this 
study we investigated the impact of using sequential learning to exploit very small, siloed sets of clinical and 
imaging data to train AI models. Furthermore, we evaluated the capacity of such models to achieve equivalent 
performance when compared to models trained with the same data over a single centralized database. 
Methods: We propose a privacy preserving distributed learning framework, learning sequentially from each 
dataset. The framework is applied to three machine learning algorithms: Logistic Regression, Support Vector 
Machines (SVM), and Perceptron. The models were evaluated using four open-source datasets (Breast cancer, 
Indian liver, NSCLC-Radiomics dataset, and Stage III NSCLC). 
Findings: The proposed framework ensured a comparable predictive performance against a centralized learning 
approach. Pairwise DeLong tests showed no significant difference between the compared pairs for each dataset. 
Interpretation: Distributed learning contributes to preserve medical data privacy. We foresee this technology will 
increase the number of collaborative opportunities to develop robust AI, becoming the default solution in sce
narios where collecting enough data from a single reliable source is logistically impossible. Distributed sequential 
learning provides privacy persevering means for institutions with small but clinically valuable datasets to 
collaboratively train predictive AI while preserving the privacy of their patients. Such models perform similarly 
to models that are built on a larger central dataset.   

1. Introduction 

The application of artificial intelligence (AI) (i.e., machine/deep 
learning models) within the clinical decision making process, also 
referred to as precision medicine, has become a research topic of 
increasing interest [1,2]. The rising number of published AI models in 
the literature that support diagnosis/prognosis is a testament to this. 

The most common way to train AI models, often referred to as 
“centralized training”, is when the data is sourced from a single 
centralized database and the training of the classification AI model is 
local to a single machine. This approach however is not ideal during 
collaborative efforts where data sharing and centralization is strictly 

regulated by legal and ethical considerations. For instance, the General 
Data Protection Regulation (GDPR) and Health Insurance Portability 
and Accountability Act (HIPAA) act as safeguards to protect the privacy 
of patient data. Distributed learning (i.e., federated learning, ensemble 
learning, or sequential learning) offers a promising solution to this 
centralization barrier, allowing development and validation of predic
tive models while preserving the privacy the patient data. Federated 
learning, the most conventional form of distributed learning, involves a 
master server that coordinates the initialization and aggregation of 
learning within a consortium of partners [3,4]. Ensemble learning 
consists of training independent models on local data, and each model’s 
predictions on new data are grouped to a single global prediction [5]. 
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Sequential distributed learning is an extension of distributed learning 
enabling the partners of a consortium to iteratively update a model with 
their respective local datasets. The last model in the queue is the final 
model [6,7]. These approaches are particularly appealing in the cases of 
small datasets (e.g., low clinical volume or rare diseases) in which the 
amount of data available to a single center is below the threshold to 
develop robust and generalizable AI. Since the performance and the 
robustness of an AI model is directly related to the number of samples on 
which it was trained and validated [2], the scarcity of data coupled with 
lengthy procedures required to centralize data can derail initiatives to 
develop clinical decision support tools. 

While distributed learning has been well established with applica
tions in multicentric studies [3,6,8–10], and previous work on ensemble 
distributed learning on small local datasets has indicated promising 
performance [11,12], the impact of the network data-scape (e.g., small 
batch sizes) has yet to be systematically investigated for sequential 
distributed learning. In this work, we investigate the performance of 
Stochastic Gradient Descent (SGD) based classifiers trained using a 
sequential distributed learning approach. We evaluate the influence on 
model performance when using micro batch sizes (as small as n = 1) to 
replicate cases where a participating institution (or partner) may only 
provide a single case record to the consortium to support training. To 
this extent we examine the influence of micro batch sizes on sequential 
learning model performance compared to the equivalent (i.e., same 
data) centralized model using a variety of Radiomics and clinical 
open-source datasets. 

2. Background and significance 

2.1. Model optimizers - stochastic gradient descent 

This work also explores stochastic gradient descent (SGD) which is 
an iterative optimization method. It is a commonly used optimization 
technique applied to various machine and deep learning algorithms 
[13]. Upon each training iteration, the SGD optimizer fine-tunes the 
algorithm, minimizing the error of the model. As opposed to standard 
gradient descent optimizers, where the error is reduced over the entirety 
of the training dataset, SGD randomly selects small training batches and 
approximates the gradient for the random batch. The iterative process of 
batch selection is performed by randomly shuffling the dataset and 
minimizing over all batches, offering the advantage of avoiding local 
minima and reducing model optimization time. 

2.2. Challenges in medical image analysis 

Multicentric studies are needed to develop robust AI and to 
demonstrate the clinical relevance of imaging AI. This kind of studies 
face many challenges such as:  

1) Data collection (described in section “Medical data sharing”);  
2) Data heterogeneity, caused by the difference in acquisition and 

reconstruction settings amongst the different medical centers [14]. 
To ensure better model building in a heterogeneous domain, the raw 
data and/or the features derived from it must be harmonized [15, 
16];  

3) And Inter-reader variability, the automation of manual tasks, such as 
organ and lesion delineation, requires to learn from ground truth 
masks delineated manually by experienced radiologists [17].The 
difference in experience and trainings of the clinicians leads to a 
variation on the ground truth delineations, which in turn represents a 
challenge in segmentation model training and validation [17]. 

2.3. Medical data sharing 

Despite the efforts made to publicly share medical data in public 
repositories, including, the cancer imaging archive (TCIA; https://www. 

cancerimagingarchive.net/), and the NIH BioLINCC (https://biolincc.nh 
lbi.nih.gov/home/), among others [18], data sharing remains very 
difficult, especially in low prevalence rare diseases. Within the context 
of rare-diseases, data sharing limitations can hinder rare disease 
research and development, as well documented cases may be limited in 
number. This proves especially difficult in situations where a single 
institution may want to extract hidden insights using machine learning 
approaches, such as a diagnostic or prognostic biomarker. Initiatives, 
such as the European Joint Program on Rare Diseases (EJP RD; http 
s://www.ejprarediseases.org/index.php/about/), began to address this 
issue and has illustrated the potential of data in driving precision 
medicine and accelerating rare disease diagnosis/prognosis. 

The importance of datatype (e.g., genotype, phenotype and endotype 
among others) in modeling patients with rare diseases, is well demon
strated within the literature [19,20]. However, de-identification of pa
tient data prior to sharing, does not necessarily guarantee preservation 
of privacy [21] as patient personal information can potentially be 
re-identified from the de-identified features (e.g., up to 99.98% of the 
American population in any dataset can be identified using only 15 
demographic features) [22]. This risk increases as the dimensionality of 
data increases. In order to protect patient sensitive information, data 
acquisition and sharing is therefore tightly regulated by ethical and legal 
constraints [23]. In this context, distributed sequential learning is an 
important approach to facilitate data analysis across institutions while 
preserving data privacy. 

2.4. Distributed learning 

Distributed learning was first applied to clinical decision support 
systems in 2013 [2]. Distributed learning infrastructures enable the 
efficient training of machine/deep learning models by isolating training 
data in respective local databases of each collaborative center. Distrib
uted learning can be applied in various forms. In federated learning, 
each of the collaborators connects to a master server that initializes and 
updates learning. After initialization, each collaboration center trains a 
portion of the model on their local data then provides the resulting 
model weights to the master server. The master server in turn aggregates 
the weights, updates the model, and shares the updated model weights 
with the collaborators within the network. Each collaborator then re
trains the local models based on the updated weights and sends them 
back to the master server to close the loop, which operates until a 
convergence threshold is reached [3,4]. Another form of distributed 
learning is sequential learning, differing in learning management ar
chitecture: 1) learning orchestrated by a cloud server such as the Per
sonal Health Train (PHT; https://www.dtls.nl/fair-data/personal-health 
-train/) [9,24], or 2) decentralized learning as applied in 
Chained-Distributed Machines Learning (C-DistriM) [6]. Each iteration 
in a sequential learning process corresponds to an update of the model 
from one collaborator. This type of learning is slower when compared to 
federated learning, where the learning is parallel, but is not subject to 
the logistical concerns (mainly related to the variation of the internet 
connection speed across the partners) related to federated learning [25]. 

In distributed learning data is not visible to the researchers. For this 
reason, researchers have to rely on the statistical information derived 
from the local data to build a global model. To reach an optimal per
formance some modeling steps such as feature selection and inference 
have to be adapted [4,26,27]. In this regard, the literature has demon
strated both federated learning and distributed learning achieve a 
comparative performance to traditional centralized learning approaches 
[4,6,10,28,29]. 

2.5. Machine learning classifiers 

In this work we consider three machine learning classifiers, depicted 
in Fig. 1, in distributed sequential settings: 
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1. Support vector machines (SVM), a supervised learning algorithm, 
applied mostly towards classification, but also for regression and the 
detection of outliers. SVMs work by establishing two parallel hy
perplanes, separating the different classes of the feature space. The 
best fit is established as the one that maximizes the distance between 
both hyperplanes [30]. To accommodate data variability (i.e., line
arly separable or not) various kernels such as linear, radial basis 
function have been established to optimize the distance between 
hyperplanes [31]. In this work we applied linear SVM techniques.  

2. Logistic regression is a statistical method used for analyzing a feature 
space in which there are one or more independent variables that 
identify a predefined outcome. The assumption is that multiple linear 
regressions of the independent variables are transformed using a 
logit function to form a conditional probability of the outcome var
iable. Logistic regression assumes that the feature space possesses a 
linear relationship with the outcome, making it a linear algorithm 
with a nonlinear transform [30]. 

3. Perceptron, a single-layer neural network used for linear classifica
tion. The hidden layer mimics the design of a network of neurons 
within the human brain. Similarly, a perceptron network predicts 
classifications based on patterns within a series of input features 
correlating to a specific outcome [30]. The process is as follow: 1) the 
input features are multiplied by their corresponding weights, that are 
randomly selected at the first iteration, 2) sum the results of step (1) 

to generate a weighted sum, 3) calculate the outcome (output) by 
applying the weighted sum to the activation function, that maps the 
outcome into values ranging between two predefined values (labels) 
such as [0,1]. 

3. Methods 

3.1. Data 

In this study, four open-source datasets were collected from two 
different public repositories: the UC Irvine Machine Learning Repository 
(https://archive.ics.uci.edu/ml/index.php) and cancerdata.org 
(https://www.cancerdata.org/). The characteristics of these datasets are 
illustrated in Table 1. The datasets include:  

1. breast cancer Wisconsin dataset [32].  
2. Indian liver dataset [33],  
3. NSCLC-Radiomics dataset [34,35],  
4. Stage III NSCLC dataset [36]. 

These datasets were used to train and test the selected machine 
learning classifiers. Each of these datasets consists of a feature space 
corresponding to a binary outcome, as illustrated in Table 1. In addition 
to these four data sets, we extended our analysis to test sequential 

Fig. 1. A) support vector machine, B) logistic regression, C) perceptron.  
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distributed learning on deep neural networks applied to smaller sets of 
(MNIST) dataset [37]. 

The breast cancer Wisconsin dataset consists of features calculated 
from a digitized image of a fine needle aspirate (FNA) of a breast mass 
[38], and an outcome defined as “malignant” or “benign”. ANOVA test 
was used to perform select the robust features. 50% of the features were 
discarded based on ANOVA’s F-ratio, reducing the total number of 
features from 30 to 15. 

The Indian liver dataset [33] consists of a set of demographics and 
clinical features (all patient records were collected from North East of 
Andhra Pradesh, India) for patients with liver disease. A Pearson pair
wise feature correlation was performed. Highly correlated features (i.e., 
with Pearson correlation coefficient > 0.7) were discarded, reducing the 
total number of features from 11 to 8. Four patients had missing values 
corresponding to one feature, the missing data were imputed based on 
the mean value of the corresponding feature vector. 

The NSCLC-Radiomics dataset [34,35] consists of radiomics features 
extracted, using RadiomiX (Radiomics/Oncoradiomics SA, Liège, 
Belgium) based on quantitative image analysis technology, from gross 
tumor volumes (GTV) of standard CT images corresponding to 422 pa
tients. Gross tumor volume segmentations were performed by trained 
oncologists. Of the 421 records, 44 subjects were discarded during the 
radiomic features calculation phase. The discarded subjects had GTV 
segmentations with multiple unconnected volumes. In these cases, 
signature feature “compactness” cannot be calculated since it is defined 
for a single volumetric object. The outcome (survival) in 
NSCLC-Radiomics was converted into two-year survival (binary). New 
feature selection was not performed, the four predictive features re
ported in the original study [39] were used. 

Data from Ref. [36] is referred to as The Stage III NSCLC dataset. The 
dataset consists of a combination of clinical, dosimetric features and 
clinical outcome (survival) for lung cancer patients. Missing data were 
imputed, using the scikit-learn (version 0.22) imputation transformer. 
The imputation was based on the mean values of each feature. No 
feature selection was performed for this dataset, instead predictive 
features reported in the original study [36] were used to train the 
models. 

As a means to mitigate classifier scaling bias, features in all training 
sets were independently normalized to the interval [0,1] and the same 
normalization factor was applied to their respective validation and test 
sets. The primary objective of this work was to assess model perfor
mance variability across unique training scenarios in centralized vs. 
distributed SGD training approaches. Improving the prediction perfor
mance of for models trained with these datasets was out of the scope of 
this work. 

3.2. Experiment design 

Three commonly used machine learning (ML) classifiers were 
selected to conduct this study (Support Vector Machine (SVM), Logistic 
Regression, and Perceptron). Each classifier satisfies the inclusion 
criteria:  

1. The classifier can be trained in a sequential manner,  
2. The classifier has previously been applied and accepted in medical 

image analysis scientific community [8,40]. 

The open-source SGDClassifier package (scikit-learn v0.22, Google 
Summer of Code) in Python (v3.6) was used to implement the selected 
classifiers [41]. 

Each dataset was split into training, validation, and test sets (60% 
training, 20% validation, and 20% testing). Training, validation, and 
test sets were stratified based on the outcome label to guarantee equal 
percentage of positive and negative samples on each subset. The vali
dation data was used for hyperparameter tuning and the test set was 
used evaluate the model performance. 

For each dataset, we simulated four training cases: 
Centralized: a centralized learning approach where the entirety of 

the training set was used by a single partner to fit the model – used as the 
reference for distributed learning approaches. 

Case 1. a distributed learning approach composed of 2 partners (2 
subsets), randomly distributed between each partner (67% and 33% of 
the dataset). 

Case 2. a distributed learning approach representing an extreme case 
where each partner contributes with a single datapoint (i.e., from a 
single patient). In this case the model was updated at each iteration 
incorporating one additional datapoint. 

Case 3. a repeat of Case 2, with the exception of randomly shuffling 
the dataset to observe the effect the order of the training data (of medical 
centers) has on the resulting model. 

3.3. Optimization of training parameters 

3.3.1. Centralized model 
For each classifier and dataset pair, we trained a central model and 

used it as the reference to compare performance of each corresponding 
distributed model. Hyperparameters tuning was performed for optimal 
performance. The primary tuned parameter specified the regularization 
parameter used to calculate learning rate, herein referred to as alpha (α), 
and number of iterations (epochs). Default values with respect to the 
classifier were used for remaining parameters such as tolerance, and 
penalty. To tune the hyperparameters we defined a set of alpha values 
ranging between 1e− 7 and 1, as illustrated in Fig. 2. For each classifier:  

1. The validation set performance (determined by the area under the 
curve (AUC) of the Receiver Operating Characteristic curve (ROC)), 
was estimated for each parameter α.  

2. The resulting models were compared based on their performances.  
3. The best α parameter was then selected according to the model 

comparison outcome. 
4. Each classifier was subsequently retrained using the best corre

sponding α parameter.  
5. Finally, the performance of the global model was then evaluated 

against the appropriate test set. 

Table 1 
Dataset characteristics.  

Dataset Disease Outcome Patients Training 
samples 

Validation 
samples 

Test 
samples 

Number of Features 
(after selection) 

Feature type 

Breast cancer 
Wisconsin [32] 

Breast cancer Breast mass 
malignancy 

569 341 114 114 15 clinical 

Indian liver [33] Liver disease Liver disease 583 349 117 117 7 demographics, 
clinical 

NSCLC-Radiomics 
dataset [34,35] 

Non-small-cell lung 
cancer 

2-year survival 421 224 75 75 4 radiomics 

Stage III NSCLC [36] Stage 3 non-small- 
cell lung cancer 

Overall survival 
(binary) 

548 328 110 110 8 clinical, 
dosimetric  
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3.4. Distributed learning models 

Hyperparameters tuning was also performed for distributed learning 
cases, as illustrated in Fig. 3. Model optimization was performed over 5 
key steps:  

1. For each simulated partner, estimate the validation set performance 
(AUC) corresponding to each parameter α.  

2. Compare the resulting models based on their performances.  
3. Select the best α parameter according to the model comparison 

outcome.  
4. Retrain each classifier using the best corresponding α parameter in a 

sequential manner.  
5. Finally, the performance of the global model was then evaluated 

against the appropriate test set. 

Finally a pairwise comparison of the final aggregated models AUC 
values corresponding to each classifier and dataset was performed using 
DeLong tests [42]. 

To consider the impact of shuffling the local training datasets, and 
their size on model performance in cases where partners have multiple 
datapoints each, we extended the experiments conducted in this study. 
To sufficiently realize these experiments, we sourced the Modified Na
tional Institute of Standards and Technology (MNIST) dataset [37], a 
commonly used large dataset suited to test deep neural networks. Data 
description, the different data splits, model architecture, and results are 
available in Supplementary Materials (Section A1). 

4. Results 

4.1. Results based on dataset 

The combination of 4 datasets, training cases and 3 model archi
tectures resulted in 48 uniquely trained models. Table 2 summaries 
model performance for each architecture and training use case reported 
as the AUC and a 95% confidence interval (CI). Models trained with the 
breast cancer dataset outperformed models trained with other datasets 
in all model architectures. The Indian dataset had notably better per
formance in specific training use cases and model architectures when 
compared to classification performance for either NSCLC dataset. Lo
gistic regression and perceptron architectures had improved perfor
mance over SVM for classification in either NSCLC dataset. 

4.2. Results based on training use case 

Fig. 4 depicts the AUC values corresponding to each study case for 
each pair of classifier and dataset. For each classifier, the derived AUC 
values per use case (centralized, Case 1, Case 2, Case 3) trended with a 
high degree of similarity but were not identical. Shuffling and local 
dataset size variability produced observable differences in the ROC 
curves. However, the Pairwise DeLong tests [42] were used to compare 
the ROC curves for each of the training scenarios and found no statis
tically significant differences (p-values > 0.05), as summarized in 
Table 3 organized by classifier and training dataset. Furthermore, each 
model trained in a distributed fashion did not differ significantly from 

Fig. 2. Model training design: 1) each dataset is divided into training, validation, and testing sets; 2) train a model and validate it for each α; 3) compare the AUCs 
corresponding to each α; 4) select the value of α that returned the best AUC; 5) train the main model using the selected α, 6) test the model using the test data, 7) save 
the model. 

Fig. 3. Distributed model training 
design: 1) each dataset is divided into 
training, validation, and testing sets; 2) 
each training set is split into distributed 
sets; 3) train a model for each distrib
uted dataset and validate it for each α; 
5) compare the AUCs corresponding to 
each α; 6) select the value of α that 
returned the best AUC; 7) train the main 
model using in a sequential manner 
across the distributed datasets using the 
selected α, 8) evaluate all the distributed 
models using the same test, 9) save the 
final model in the queue as the main 
model.   
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the reference centralized trained model (p-values > 0.05). These results 
were validated on a CNN classification model using the MNIST dataset. 
Detailed results of the MNIST experiments are presented in Supple
mentary Materials (Section A). ROC curves corresponding to each 
training scenario and dataset is reported in the Supplementary Materials 
(Section B). 

4.3. Results based on classifier architecture 

In most cases the average absolute difference in the AUC values were 
blow 5%. The average difference in the AUC of the centralized training 
over the Breast cancer, Indian Liver, NSCLC-Radiomics dataset, Stage III 
NSCLC datasets was reported as 0.67%, 1.75%, 8.33%, and 6.24%, 
respectively. Differences in the AUC for each training scenario versus 
each classifier has been summarized in Table 1, Supplementary Mate
rials (Section C). The maximum average difference of the AUC values for 
the distributed learning classifiers per dataset increases up to 8.74%, 
7.66%, and 8.64% for case, Case 2, Case 3, respectively. It should be 
noted that in extreme cases certain scenarios had AUC differences above 
10%, highlighted in Table 1 of the Supplementary Materials (Section C). 
These results suggest the optimal classifier chosen is highly dependent 

on the characteristics of the dataset. 

5. Discussion and future work 

High quality datasets with sufficient training datasets are required 
for machine learning models to converge and generalize [2]. When 
working with patient data, there are important ethical and legal con
siderations to be managed, when considering sharing patient data be
tween institutions. 

The results presented in this work demonstrate that sequential 
distributed learning on small, isolated datasets (including extreme cases 
of model updated using a single datapoint at a time) achieves equivalent 
performance to models trained in conventional centralized learning. 
Similar conclusions were observed in the case of multiclass classification 
using the MNIST dataset [37]. We observed, by applying a pairwise 
DeLong [42] comparison, that the AUC for distributed learning models 
do not differ with statistical significance from models trained in 
centralized scenarios. 

The results in Tables 2 and 3 and the ROC curves indicate that there 
is a difference in the performance of different classifiers, and this dif
ference can vary from one dataset to another. We noted that the average 

Table 2 
Discrimination performance (AUC) obtained by training centralized and distributed classifiers (SVM, logistic regression, and Perceptron) using four different datasets 
(Breast cancer, Indian Liver, NSCLC-Radiomics dataset, and Stage III NSCLC).   

Classifier 
Training scenario AUC (95% CI) 

Breast cancer Indian Liver NSCLC-Radiomics dataset Stage III NSCLC 

Support vector machine Centralized 0.99 (0.98–1) 0.76 (0.68–0.85) 0.64 (0.51–0.77) 0.64 (0.48–0.79) 
Case 1 0.99 (0.99–1) 0.77 (0.69–0.86) 0.64 (0.51–0.77) 0.61 (0.46–0.75) 
Case 2 0.98 (0.98–1) 0.74 (0.65–0.83) 0.65 (0.52–0.77) 0.60 (0.46–0.76) 
Case 3 0.98 (0.97–1) 0.75 (0.67–0.84) 0.62 (0.49–0.75) 0.61 (0.46–0.76) 

Logistic Regression Centralized 0.98 (0.98–1) 0.76 (0.67–0.84) 0.72 (0.61–0.84) 0.70 (0.57–0.82) 
Case 1 0.97 (0.95–0.99) 0.76 (0.67–0.85) 0.71 (0.59–0.82) 0.69 (0.56–0.82) 
Case 2 0.97 (0.94–0.99) 0.73 (0.64–0.82) 0.72 (0.61–0.84) 0.65 (0.52–0.78) 
Case 3 0.99 (0.98–1) 0.74 (0.65–0.83) 0.70 (0.58–0.82) 0.67 (0.55–0.79) 

Perceptron Centralized 0.99 (0.98–1) 0.78 (0.70–0.86) 0.72 (0.61–0.84) 0.70 (0.55–0.84) 
Case 1 0.98 (0.96–1) 0.76 (0.68–0.85) 0.68 (0.55–0.80) 0.69 (0.56–0.82) 
Case 2 0.99 (0.98–1) 0.74 (0.65–0.83) 0.67 (0.54–0.79) 0.67 (0.53–0.81) 
Case 3 0.99 (0.98–1) 0.78 (0.70–0.86) 0.66 (0.54–0.79) 0.69 (0.56–0.81)  

Fig. 4. AUC of each classifier and dataset pair, for each dataset four different models have been trained (Centralized, Case 1: two partners, Case 2: each center holds 
one patient, Case 3: each center holds one patient with a shuffle in the order of the partners while training). 
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AUC difference between the classifiers can increase up to 8.33%, 8.74%, 
7.66%, and 7.66% with respect to each use case (centralized, Case 1, 
Case 2, Case 3) and dataset (Breast cancer, Indian Liver, NSCLC- 
Radiomics dataset, Stage III NSCLC). Even though this margin may be 
perceived as inconsequential, the clinical risk of decisions based on 
predictions must be considered as with all changes in model perfor
mance. Cases with AUC differences above our 10% threshold (high
lighted in red), indicate that this specific classifier is suboptimal for the 
dataset in question. Thus, with respect to learning [43], we recommend 
to select the classifier based on comparative performance of the different 
centralized and distributed classifiers, or base the selection justified 
criteria related to the data characteristics that will be used to fit the 
model. 

Previous reports on distributed ensemble learning [11,12], showed 
the potential of application of this particular type of distributed learning 
to small siloed datasets. For example, Tuladhar et al. [12] reports that 
grouping models learned locally from either artificial neural network, 
SVM, or random forest could efficiently exploit small sets of data to build 
global models. These results suggest that the application of ensemble 

learning on small dataset is feasible. While other authors have demon
strated that grouping local logistic regression models, is promising in the 
case of small datasets [11]. In addition to that, they proposed a model 
update based on the distributed sets of data information to improve the 
global model performance on small datasets. Results of these studies 
[11,12] showed an overall improvement in global model performance 
compared to models trained in a single institution data. These results, 
however, cannot be extended to the case of distributed sequential 
learning. 

Our results demonstrate that sequential distributed learning can be 
beneficial for the application of AI for outcome prediction in favor of 
medical institutes holding very small datasets. Practical examples of 
small datasets can be 1) pediatric cases that tend to suffer from small 
sample sizes [44], 2) early phase clinical trials where the sample size 
tend to have around 20 subjects [45], and 3) rare diseases as they have a 
very low prevalence (<5/10000 in the European population) [46], 
making it nearly impossible for a single medical center to collect enough 
data to train machine learning models. Even with these limitations, and 
with considerably small datasets (20–100 datapoints), researchers have 
been using machine learning to build diagnosis and prognosis models for 
rare diseases [47]. The generalizability of trained models is directly 
related to the quality and quantity of the training data [48]. In this re
gard, distributed learning provides opportunity to develop generalizable 
models with small high-quality datasets in multi-center applications 
while also mitigating the need to share data and maintaining the privacy 
of all patient information, such as imaging, genomic, or clinical insight. 

Batch size is well known to have an effect on final model perfor
mance [49], where evidence suggests that large batch size does not al
ways relate to better model performances [50]. Conversely, in 
distributed learning applications, 1) a smaller batch size has been linked 
to the privacy of the training data, as it considerably reduces the ability 
to reproduce training data from shared model weights in case of weights 
leakage [51], 2) it has been well documented that the order of training 
partners in a distributed network influences the performance of the 
model [28]. Our results suggest that the centralized and distributed 
models are not statistically different. Therefore, we see distributed 
sequential learning as a viable tool for multicentric precision medicine 
studies, particularly in applications with small datasets such as rare 
diseases and could also be applied in pediatrics and early phase clinical 
trials. 

The tuning of each classifier prior training of the final model is an 
essential step in achieving robust and generalizable models as this is 
dependent on the nature of data used in training. The need for tuning 
hyperparameters stems from the fact that the classifiers investigated in 
this work are using SGD as an optimizer, and thus cannot avoid this 
optimization step. The main parameter that needs to be optimized is the 
learning rate; as it controls the manner in which model is modified ac
cording to the estimated error at every iteration/update of the model 
weights. The process of learning rate selection is challenging as a small 
value theoretically facilitates better performances but in contrast can 
increase training phase time significantly. On the other hand, a larger 
learning rate value can result in an unstable training phase, as the model 
updates very quickly in each iteration causing it to converge to a flat (i. 
e., less optimal) minima. 

Tuning model hyperparameters is also imperative for distributed 
classifiers, as we showed in this study. Furthermore, we observed that 
there is a need to investigate different combinations of hyperparameters 
and number of iterations. Hyperparameter and training settings such as 
number of iterations, coupled with a set of model selection criteria 
(based for example on a comparison of model accuracies or model pa
rameters) [52], can be beneficial to reduce the risk of overfitting. 
However, this leads in turn to one limitation, related to the longer 
execution time in comparison to traditional centralized training. This 
increase in time is accounted by the need to investigate all the training 
data across all the participating partners to set optimal hyper
parameters. In addition to this, it is important to consider 

Table 3 
p-values corresponding to the pairwise Delong test.   

Model 
Test Dataset 

Breast 
cancer 

Indian 
Liver 

NSCLC- 
Radiomics 
dataset 

Stage III 
NSCLC 

p-value p-value p-value p-value 

Support 
vector 
machine 

Central 
model vs  
Case 1 

0.155 0.594 0.926 0.810 

Central 
model vs  
Case 2 

0.785 0.475 0.871 0.718 

Central 
model vs  
Case 3 

0.082 0.861 0.53 0.760 

Case 1 vs  
Case 2 

0.143 0.429 0.969 0.953 

Case 1 vs  
Case 3 

0.071 0.710 0.685 0.980 

Case 2 vs  
Case 3 

0.271 0.580 0.234 0.941 

Logistic 
Regression 

Central 
model vs  
Case 1 

0.061 1 0.422 0.606 

Central 
model vs  
Case 2 

0.076 0.250 0.196 0.541 

Central 
model vs  
Case 3 

0.904 0.538 0.373 0.663 

Case 1 vs  
Case 2 

0.425 0.224 0.401 0.652 

Case 1 vs  
Case 3 

0.052 0.652 0.823 0.787 

Case 2 vs  
Case 3 

0.066 0.677 0.285 0.762 

Perceptron Central 
model vs  
Case 1 

0.147 0.448 0.062 0.600 

Central 
model vs  
Case 2 

0.427 0.267 0.332 0.809 

Central 
model vs  
Case 3 

0.370 0.858 0.210 0.662 

Case 1 vs  
Case 2 

0.322 0.274 0.838 0.868 

Case 1 vs  
Case 3 

0.329 0.212 0.719 0.936 

Case 2 vs  
Case 3 

0.946 0.129 0.848 0.856  
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communication costs, as all parameter tuning and model updates occur 
over the internet. Characterizing the time required for training is chal
lenging as the duration is highly dependent on each partner’s internet 
bandwidth. Future directions of this work will include analysis to 
characterize the model training duration in a distributed fashion, iden
tify the scalability of the infrastructure to accommodate larger loads by 
increasing available computational power either though scale up 
(additional hardware) or scale out (additional nodes) and investigate the 
elasticity or ability to dynamically handle varying loads of data. 

6. Conclusion 

This study demonstrates 1) the proof-of-concept of sequential 
distributed learning applied on small sizes of data, narrowed down to a 
single datapoint at a time 2) the opportunities associated with this type 
of distributed infrastructures on the application of AI in low prevalence 
diseases. We simulated three different distributed learning cases using 
three classifiers and four different datasets. Our results indicate that 
sequentially training the models using (extremely) small datasets de
livers statistically similar performance (p-values > 0.05) in comparison 
to the conventional centralized approach. This work provides a valida
tion of the potential of distributed learning in case of small datasets and 
a new opportunity to data driven outcome modeling in rare disease 
research. Furthermore, this work can be used to continuously update 
predictive models as new data is available. Finally, future work is 
planned to estimate and optimize the scalability of sequential distrib
uted learning infrastructures in real world settings. 
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