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Description of the deliverable; A knowledge graph produced by systematic review of existing knowledge and 
the landscape of new therapeutic development that can be used to support decision making and the 
explainability of the analysis. 

Searching through the COVID-19 research literature to gain actionable clinical insight is a formidable task, even 
for experts. The usefulness of this corpus in terms of improving patient care is tied to the ability to see the big 
picture that emerges when the studies are seen in conjunction rather than in isolation. When the answer to a 
search query requires linking together multiple pieces of information across documents, simple keyword 
searches are insufficient. To answer such complex information needs, an innovative AI technology called a 
knowledge graph (KG) could prove to be effective. 
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Introduction 

Due to the truly global nature of the COVID-19 pandemic, there has been an explosion of academic literature 
on this subject in 2020. Faced with a mountain of data, we often turn to machines for analysis. What we are 
really after is extracting knowledge from this data, and despite their prodigious computational power, machines 
are unable to understand (let alone answer) our complex questions. Even for the most basic questions, the 
search has to often be reduced to keywords, which reduces the sophistication of the query (loss of semantics). 
A human easily knows the difference between “Which drugs reduce the severity of COVID-19” and “Which drugs 
increase the severity of COVID-19”, but for a purely keyword-based search with no semantics, this difference 
cannot be conveyed to a machine. Now imagine a question like "Which are the top 3 drugs being trialed for 
treating COVID-19 in terms of total number of enrolled patients" or "For which clinical outcome is predictive 
modeling for COVID-19 most successful"? If a machine could answer such questions, it would significantly 
accelerate scientific progress by providing answers to complex questions that may today require many hours of 
reading, even by subject matter experts. KG is an AI innovation to bring us closer to this vision. 

When the DRAGON proposal was first submitted to IMI, the partner list included Aladdin Healthcare 
Technologies, who were responsible for an early deliverable (M6) of “a knowledge graph produced by 
systematic review of existing knowledge and the landscape of new therapeutic development that can be used 
to support decision making and the explainability of the analysis.” During the consortium approval process, 
Aladdin was unable to remain within the consortium owing to financial constraints. While this meant that 
DRAGON was no longer privy to the exact vision of KG that Aladdin had planned, it spurred us to conduct this 
thorough review of the existing work related to KGs for COVID-19. This review allows us to identify the unmet 
clinical needs and refocus our efforts to produce graphs that actually add to the existing corpus, rather than 
merely duplicating efforts of other research groups. 

Methods 

Before delving into the methods used for this study, we would like to (1) emphasize that this is not a systematic 
review, but an exploratory literature review, and (2) explain the reason for making this choice. A defining feature 
of a systematic review is that it uses a repeatable analytical method to answer a well-defined research question. 
This translates to using databases like PubMed, MEDLINE, Web of Science, and clinical trial registries, and 
having pre-defined inclusion criteria that should ideally be formulated into a study protocol and published before 
the review starts. Systematic reviews are a great way of synthesizing various information sources in a mature 
discipline to guide evidence-based medicine. They are often meant to be an exhaustive summary of available 
evidence, where evidence is defined as peer-reviewed literature indexed in the databases mentioned above. A 
great example would be a systematic review of the clinical effectiveness of proton therapy. Since a systematic 
review is often meant to inform clinical practice, the inclusion criteria are much stricter than what is permissible 
in an exploratory review. 

An exploratory review, by contrast, is not meant to follow a repeatable analytical method or be an exhaustive 
summary. It typically provides a broad overview of work that has been done in a certain research domain, and 
uses this to define the scope of future research. In other words, it is meant to define research objectives rather 
than change or inform clinical practice. Almost every original research paper begins with a short exploratory 
review of the current state-of-the-art. By its very nature, KG for COVID-19 is a nascent field of research. While 
peer-reviewed literature does exist in this field, there is work being done both in academia and in industry that 
has yet to be published in journals. Thus, using only indexing databases like PubMed is an inadequate way to 
capture the current extent of the research. 

The aim of this review is to identify the different applications of KGs with respect to COVID-19, even if such 
research is not mature enough to have been published in peer-reviewed journals that are indexed by PubMed 
(which does not index all journals). For example, the first citation (an excellent review article) used in this paper 
cannot be found using PubMed, because the source (Harvard Data Science Review, published by MIT Press 
online) is not indexed on PubMed. Unlike PubMed, Google Scholar is not limited to clinical and biomedical 
journals, and includes conference proceedings, books, and reports, that are not included in Web of Science or 
PubMed. Google Scholar searches full text of articles but PubMed and Web of Science search only the citation, 
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abstract, and tagging information. The superiority of Google Scholar over PubMed with respect to the ability to 
retrieve relevant articles using a quick search has been studied before. The advantages of PubMed over Google 
Scholar, which mainly stem from PubMed using human curation, are irrelevant for this review, because the 
sources identified by Google Scholar are perused by us before inclusion in the results. It would be unacceptable 
to use Google Scholar for a systematic review because the process must be repeatable, and human judgement 
used for quality evaluation is subjective (and thus not repeatable). However, for an exploratory review, this does 
not pose a problem, and using Google Scholar allows access to a larger number of sources (sometimes referred 
to as ‘grey literature’). An up-to-date comparison of these different search approaches from the perspective of 
a librarian can be found elsewhere. 

The search term used for finding original sources for this review was “covid-19 knowledge graph”, and the 
search was conducted using Google and Google Scholar. The reason for using Google in addition to Google 
Scholar was to identify companies or consortiums that are working in this field but have not published any 
literature, peer-reviewed or otherwise. The first five pages of results were considered in both these platforms. 
Domain expertise was used to reduce this to unique sources, which were then used to obtain the results. This 
reduction consisted of removing duplicates, verification of the relevance, and qualitative assessment of the rigor 
of publicly accessible work (whether in the form of articles or websites). The results constituted a broad overview 
of the field, separated the KGs for COVID-19 into clusters based on their intended use, and then briefly 
summarized the information pertaining to each original source. 

Results 

Table 1 summarizes the papers we found from our search and the main application for their KG (divided into 
use clusters). These use clusters (and their associated papers) are described in the rest of this section. In 
addition, our search also pointed us to the EU Datathon 2020 which organized two meetups of The Knowledge 
Graph Conference in April. The associated recordings and slides can be found in the following link. We also 
found the CovidGraph project (https://covidgraph.org), an interdisciplinary collaboration between academia and 
industry. In addition to literature data, they connected information from genes and proteins and their function, 
using open-source knowledge bases such as the Gene Ontology and the NCBI Gene Database. An important 
advantage of this project is that it uses Neo4j for modeling, storing, and exposing the KG, which considerably 
simplifies adoption by a large body of data scientists and app developers, as it is both powerful and intuitive. 
However, since there is no paper associated with this project yet, we cannot provide further detail in this review. 

Table 1: Summary of papers resulting from our literature search. 

Authors  Title  Application  
Kejriwal  Knowledge Graphs and COVID-19: Opportunities, Challenges, and 

Implementation  
KG overview  

Steenwinckel et al  Facilitating the analysis of covid-19 literature through a knowledge 
graph  

Literature review  

Wise et al  COVID-19 knowledge graph: accelerating information retrieval and 
discovery for scientific literature  

Literature review  

Michel et al  Covid-on-the-Web: Knowledge graph and services to advance COVID-
19 research  

Literature review  

Stebbing et al  COVID-19: combining antiviral and anti-inflammatory treatments  Drug repurposing  

Wang et al  COVID-19 literature knowledge graph construction and drug 
repurposing report generation  

Drug repurposing  

Domingo-Fernandez 
et al  

COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-
effect knowledge model of COVID-19 pathophysiology  

Drug repurposing  

Zhou et al  Artificial intelligence in COVID-19 drug repurposing  Drug repurposing  
Chen et al  Coronavirus knowledge graph: A case study  Multi-purpose  
Reese et al  KG-COVID-19: a framework to produce customized knowledge graphs 

for COVID-19 response  
Multi-purpose  

 

 

 

 

https://op.europa.eu/en/web/eudatathon/covid-19-linked-data#knowledgegraphs
https://covidgraph.org/
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Knowledge graphs for literature review 

We found three articles that used KGs to facilitate literature review. In the first paper by Steenwinckel et al, the 
Kaggle dataset of 63,000+ papers (also known as CORD-19, released to allow recent advances in NLP and 
other AI techniques to generate new insights to fight the pandemic) was used to create a KG. The authors 
started with a summary of initiatives by other research groups who are using the same dataset, identifying the 
CovidGraph project as the largest such initiative, which links the CORD-19 dataset to the NCBI Gene Database 
and other gene ontologies to enable scientific analysis. The authors then discussed the steps needed to 
construct their KG. In the CORD-19 dataset, information about each paper is provided in the form of a CSV file. 
For more than 51,000 of these papers, a JSON file is provided that contains detailed information about the 
authors, the content, and the other studies that were cited. The authors semantically enriched the data by 
mapping it to the Resource Description Framework (RDF) using the RDF Mapping Language (RML), which was 
convenient because the initial data was already structured (CSV and JSON). Before the conversion from JSON 
to RDF, the JSON. files were extended to include additional information from external resources, including 
DBpedia, BioPortal, CrossRef and ORCID. 

To make the transformation from JSON to RDF, a mapping document was created that contained rules on how 
each element in the JSON can be mapped on a corresponding semantic output value. The mapping document 
was created with YARRRML, a human-readable text-based representation that can be used to represent RML 
rules. As this YARRRML document is only a human-readable text-based representation of RML rules, they 
converted this YARRRML document to an RML document by using the YARRRML Parser. While it is possible 
to write RML rules in this setup directly, by using YARRRML, they created the ability to let others extend the 
mapping documents with reduced human effort and without requiring extensive specific knowledge about 
semantic web formats. The RMLMapper takes both the extended JSON files and the RML document generated 
using the above YARRRML document as input and produces a set of N-Triples for each paper. All these N-
Triple files were concatenated to form a single KG. 

The authors discussed the applications of such a KG. One can perform network analysis by converting the KG 
into a regular directed graph. The conversion is needed as existing network analysis tools cannot deal with 
different labeled edges. The converted graph consists of nodes that represent the papers and edges between 
these nodes that represent citations from one paper to the other. Clustering analysis reveals information on how 
tightly some groups of publications are interconnected through citations. Node centrality analysis can identify 
publications that are influential with respect to COVID-19, rather than influential in general (for which looking at 
number of citations would suffice); several metrics can be used to estimate the centrality of a node. KGs cannot 
be directly used for machine learning. To tackle this issue, knowledge graph embeddings have been proposed, 
where components of a knowledge graph, including entities and relations, are embedded into continuous vector 
spaces. The most common technique to build such embeddings is RDF2Vec. Once converted into these 
vectors, it becomes easy to search for nearest neighbors, which allows one to easily find similar or related 
papers in a much more powerful way than a keyword search. These vectors can also be used for clustering 
papers, which is more powerful than the network clustering analysis previously described, which only uses 
citation links. The second paper, by Wise et al, also uses the CORD-19 dataset, is a demonstration of Amazon 
Web Services AI, and is conceptually more advanced than the first paper. Unlike the first paper, the second 
paper does not support the FAIR (Findable, Accessible, Interoperable, and Reusable) principle, and does not 
make any of its code public. However, their KG is used to power a search engine (https://www.cord19.aws/), 
which is available for public use. The authors provide a succinct definition of a KG: “Knowledge graphs (KGs) 
are structural representations of relations between real-world entities where relations are defined as triplets 
containing a head entity, a tail entity, and the relation type connecting them.” Their KG contains five types of 
entities: paper (with attributes of title, publication date, journal, and Digital Object Identifier (DOI) link), author 
(with attributes of first, middle, and last names), institution (with attributes of name, country, and city), concept, 
and topic. Figure 1 illustrates the directed property graph structure for a small subgraph of their KG. 

 

  

https://www.cord19.aws/
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Figure 1: Visualization of KG. Paper entities (blue) connect to Concepts 
(red), topics (light blue), and authors (gold) through directed relations. 
Authors connect to institutions (green). Taken from Wise et al. 

Concept entity: They used their proprietary NLP system called Comprehend Medical Detect Entities V2 for 
medical language entity recognition and relationship extraction. Given the example text "Abdominal ultrasound 
noted acute appendicitis, recommend appendectomy followed by several series of broad spectrum antibiotics", 
the system extracts Abdominal (Anatomy), ultrasound (Test Treatment Procedure), acute appendicitis (Medical 
Condition), appendectomy (Test Treatment Procedure), and antibiotics (Medication) as recognized entities 
along with entity types and model confidence scores. Entity names e.g. acute appendicitis, form concept entities 
while entity type and model confidence score are the entities’ attributes. Topic entity: They defined 10 topics 
using expert knowledge: Vaccines/Immunology, 

Genomics, Public Health Policies, Epidemiology, Clinical Treatment, Virology, Influenza, Healthcare Industry, 
Lab Trials (human) and Pulmonary infections. Since manually labeling a topic model is inefficient, they manually 
labeled only a subset of the papers and used this to train a multi-label classifier (an extension of Latent Dirichlet 
Allocation termed Z-LDA) using the title, abstract and body text from each paper. The resulting classifier 
achieved an average F1 score of 0.92 with on average 2.37 labels per document. To validate their topic model, 
they checked that generated topics of papers from Journal of Virology, e.g., virology, genomics, and lab-trials-
human, were highly related to virology and the generated topics of papers from Journal of Vaccine, e.g., 
vaccines-immunology, were highly related to vaccinology. 

To curate their KG, they applied data normalization techniques which eliminated duplicate entities and noisy 
linkages. Denoising included thresholding on the confidence scores, pruning concepts that occur in 

less than 0.0001% of papers, and flagging concepts that appear in greater than 50% of papers for manual 
assessment. The KG was then used for two main tasks: information retrieval and article recommendations. For 
information retrieval, an example query "What papers discussing COVID-19 risk factors are most often cited by 
researchers within the CORD-19 dataset?" results in two steps: first, the articles which contain the risk factors 
as entities are retrieved, and then these articles are ranked based on citation counts withing the dataset. The 
authors combined article semantic information with KG topological information to quantify similarity between 
articles and construct a similarity-based recommendation system (given a paper, the engine retrieves a list of 
top-k most similar papers using cosine distance). 
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To capture semantic information, they used SciBERT that has shown strong transfer learning performance on 
a wide variety of NLP tasks. To capture KG topological information, they generated vector embeddings for each 
paper by using the algorithm TransE and Deep Graph Library Knowledge Embedding library (DGL-KE). Besides 
finding similar papers to a given paper, the recommendation engine can also be used to identify the most popular 
papers, where popularity captures the number of occurrences of an individual paper in the top-5 most similar 
items list for all papers in the dataset. 

The third paper, by Michel et al, has grander ambitions than just literature review, as the Covid-on-the-Web 
Dataset created by this team can be put to other uses in the future (such as helping clinicians to get 
argumentative graphs to analyze clinical trials and make evidence-based decisions). We categorized Michel et 
al under literature review as this is what is explicitly demonstrated in their current work. The authors are strong 
proponents of open and reproducible science goals, and the FAIR principles. Like the previous papers 
mentioned in the results, they also used the CORD-19 dataset, and enriched it using DBpedia, BioPortal, and 
Wikidata to create the CORD-19 Named Entities Knowledge Graph. In addition, each abstract of the CORD-19 
corpus was analyzed by Argumentative Clinical Trial Analysis (ACTA) and translated into RDF to yield the 
CORD-19 Argumentative Knowledge Graph. ACTA is a tool designed to analyze clinical trials for argumentative 
components and PICO (patients/population (P), intervention (I), control/comparison (C) and outcome (O)) 
elements. Finally, they provided several visualization and exploration tools based on the Corese Semantic Web 
platform (https://project.inria.fr/corese/) and MGExplorer visualization library 
(https://github.com/frmichel/morph-xr2rml/ ). 

ACTA goes far beyond basic keyword-based search by retrieving the main claim(s) stated in the trial, as well 
as the evidence linked to this claim, and the PICO elements. In the context of clinical trials, a claim is a 
concluding statement made by the author about the outcome of the study. It generally describes the 

relation of a new treatment (intervention arm) with respect to existing treatments (control arm). Accordingly, an 
observation or measurement is an evidence which supports or attacks another argument component. 
Observations comprise side effects and the measured outcome. Two types of relations can hold between 
argumentative components. The attack relation holds when one component is contradicting the proposition of 
the target component, or stating that the observed effects are not statistically significant. The support relation 
holds for all statements or observations justifying the proposition of the target component. The ACTA pipeline 
consists of four steps: (i) the detection of argumentative components, i.e. claims and evidence, (ii) the prediction 
of relations holding between these components, (iii) the extraction of PICO elements, and (iv) the production of 
the RDF representation of the arguments and PICO elements. 

Knowledge graphs for drug repurposing 

We found four articles related to using KGs for drug repurposing, which is a technique of using existing drugs 
to treat emerging and challenging diseases, thereby reducing development timelines and overall costs. The first 
article, by Stebbing et al, was published as a comment in Lancet Infectious Diseases near the beginning of the 
pandemic (April 1, 2020). The authors had earlier described how BenevolentAI’s proprietary KG, queried by a 
suite of algorithms, enabled identification of baricitinib, a numb-associated kinase (NAK) inhibitor, to suppress 
clathrin-mediated endocytosis and thereby inhibit viral infection of cells. In this work, they re-examined the 
affinity and selectivity of all the approved drugs in their KG to identify those with both antiviral and anti-
inflammatory properties, since the host inflammatory response becomes a major cause of lung damage and 
subsequent mortality for severe cases of COVID-19. This yielded three candidates: baricitinib, fedratinib, and 
ruxolitinib. Other AI-algorithm-predicted NAK inhibitors included a combination of the oncology drugs sunitinib 
and erlotinib, shown to reduce the infectivity of a wide range of viruses. However, sunitinib and erlotinib would 
be difficult for patients to tolerate at the doses required to inhibit NAK. Baricitinib emerged as the best choice, 
especially given its once-daily oral dosing and acceptable side-effect profile. In addition, the potential for 
combination therapy with baricitinib was high, including combining baricitinib with the direct-acting antivirals 
(lopinavir or ritonavir and remdesivir) currently being used in the COVID-19 outbreak to reduce viral infectivity, 
viral replication, and the aberrant host inflammatory response. This work demonstrates that a KG can facilitate 
rapid drug development. A trial of baricitinib plus remdesivir has already been conducted and was superior to 
remdesivir alone in reducing recovery time and accelerating improvement in clinical status. 

 

 

https://project.inria.fr/corese/
https://github.com/frmichel/morph-xr2rml/
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The second article, by Wang et al, used KGs for drug repurposing report generation. For a given drug, such a 
report consists of 11 typical questions they identified: (1) Current indication: what is the drug class? What is it 
currently approved to treat? (2) Molecular structure (symbols desired, but a pointer to a reference is also useful), 
(3) Mechanism of action i.e., inhibits viral entry, replication, etc. (w/ a pointer to data), (4) Was the drug identified 
by manual or computation screen? (5) Who is studying the drug? (Source/lab name), (6) In vitro Data available 
(cell line used, assays run, viral strain used, cytopathic effects, toxicity, LD50, dosage response curve, etc.), (7) 
Animal Data Available (what animal model, LD50, dosage response curve, etc.), (8) Clinical trials on going (what 
phase, facility, target population, dosing, intervention etc.), (9) Funding source, (10) Has the drug shown 
evidence of systemic toxicity? (11) List of relevant sources to pull data from. The summary of their framework 
can be seen in Fig. 2. 

 

Figure 2: Framework used by Wang et al 

They built a multimedia KG by combining (1) coarse-grained text knowledge extraction, (2) fine-grained text 
entity extraction, (3) image processing and cross-media entity grounding, and (4) knowledge graph semantic 
visualization. A KG constructed after just step (1) can be seen in Fig. 3. A demonstration of steps (2) and (3) 
can be seen in Figs. 4 and 5 respectively. Step (4) enhances the exploration and discovery of the information 
in the KG by allowing user interactivity that surpasses directed keyword searches or simple unigram word cloud 
or heatmap displays. Several clinicians and medical school students in their team reviewed the drug repurposing 
reports for three drugs that were used as a case study for the paper (Benazepril, Losartan, and Amodiaquine), 
and also the KGs connecting 41 drugs and COVID-19 related chemicals/genes. Preliminary results show that 
most of their output was informative and valid. 
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Figure 3: Constructed KG connecting Losartan (candidate drug in COVID-19) and 
cathepsin L pseudogene 2 (gene related to coronavirus). Taken from Wang et al 

 

 

Figure 4: Example of Fine-grained Entity Extraction. Taken from Wang et al 
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Figure 5: Expanding KG through Subfigure Segmentation and Cross-modal Entity 
Grounding. Taken from Wang et al 

The third article, by Domingo-Fernandez et al, created a KG that is a cause-and-effect knowledge model of 
COVID-19 pathophysiology, which could then be applied for drug repurposing. The authors point out that 
although KGs were originally developed to describe interactions between entities, novel machine learning 
techniques can generate latent, low-dimensional representations of the KG which can then be utilized for 
downstream tasks such as clustering or classification. For the creation of the KG, scientific literature related to 
COVID-19 was retrieved from open access and freely available journals (PubMed, EuropePMC, and additional 
COVID-19 specific corpuses like LitCovid). This corpus was then filtered based on available information about 
potential drug targets for COVID- 19, biological pathways in which the virus interferes to replicate in its human 
host, and information on the various viral proteins along with their functions. Finally, the articles were prioritized 
based on the level of information that could be captured in the modeling language used to build the KG. 
Evidence text from the prioritized corpus was manually encoded in Biological Expression Language (BEL) as a 
triple including metadata about the nodes and their relationships as well as corresponding provenance and 
contextual information. BEL involves encoding mechanistic information such as protein-protein interactions, 
observed correlations between phenotypes and molecules, or effect of drugs on a given target. Therefore, only 
BEL encodable articles were selected. The authors explained in the Supplementary Material why they favored 
this manual curation over a text-mining approach, arguing that the manual approach provides better quality in 
terms of contextualization (i.e., finding the proper relation between two entities due to the complexity of scientific 
writing) and understandability of the KG. They mentioned the possibility of using a semi-automatic pipeline to 
combine the advantages of manual curation and text-mining. 

Their KG summarizes mechanistic information on COVID-19 published in 160 original research articles. In its 
current state, the COVID-19 KG incorporates 4016 nodes, covering 10 entity types (e.g. proteins, genes, 
chemicals and biological processes) and 10,232 relationships (e.g. increases, decreases and association). 
Given the selected corpora, these cause-and-effect relations primarily denote host-pathogen interactions as 
well as comorbidities and symptoms associated with COVID-19. Furthermore, the KG contains molecular 
interactions related to host invasion (e.g. spike glycoprotein and its interaction with the host via receptor ACE2) 
and the effects of the downstream inflammatory, cell survival and apoptosis signaling pathways. The authors 
have identified over 300 candidate drugs currently being investigated in the context of COVID-19, including 
proposed repurposing candidates and drugs under clinical trial. The fourth article, by Zhou et al, is a review 
article for Lancet Digital Health. In the review, the authors introduced guidelines on how to use various forms of 
AI for accelerating drug repurposing, with COVID-19 as an example. With regard to KGs in particular, they 
mention that KGs can be reduced to low-dimensional feature vectors. Using the feature vectors of drugs and 
diseases, we can then measure their similarities and thus identify effective drugs for a given disease. One 
challenge for the graph embedding method is scalability.  
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The number of entities in a medical KG could be as many as several million. Several systems have been 
specifically designed for learning representations from large-scale graphs (e.g., GraphVite). The authors 
identified two works which evaded our search strategy: Gysi et al (which did not use the term knowledge graph 
in the paper and Zeng et al. Zeng et al's KG included 15 million edges across 39 types of relationships 
connecting drugs, diseases, proteins, genes, pathways, and expressions of genes and proteins from a large 
scientific corpus of 24 million PubMed publications. Using Amazon Web Services’ computing resources and 
graph representation learning techniques (DGL-KE, mentioned earlier in this paper in the context of literature 
review), they identified 41 repurposable drug candidates (including dexamethasone, thalidomide, and 
melatonin) whose therapeutic associations with COVID-19 were validated by transcriptomic and proteomics 
data in SARS-CoV-2 infected human cells and data from ongoing clinical trials. 

Knowledge graphs for clinical trials 

The pre-eminent effort to synthesize the results of clinical trials related to the prevention and treatment of 
COVID-19 is the COVID-NMA initiative (https://covid-nma.com/). This project aims to provide a complete, high-
quality, and up-to-date synthesis of evidence as soon as results are available as well as a living mapping of 
registered randomized controlled trials. The vast majority of work involved in curating the database is done by 
human volunteers. This synthesis will allow evidence-based decision-making and planning of future research. 
We would like to mention that this initiative cannot be classified as a KG in the AI sense, because the concept 
of triples (which is central to an AI KG) is not used. However, we still include information about this initiative in 
this review because the results of this approach are exactly in line with the goals of a KG. The living mapping 
of trials (i.e., trials registered on the WHO platform) is updated weekly, and contained 2358 RCTs at the end of 
2020. The living synthesis of published trials (including both articles and preprints) is updated daily, and 
contained 157 RCTs with results at the end of 2020. The highly interactive data visualizations that have been 
developed as a result of this initiative constitute some of the most useful summaries of COVID-19 research. 
Some examples are shown in Figs. 6-8, but to fully appreciate the flexibility provided by the visualization tools, 
we encourage the reader to visit the website. Potentially this high-quality human curation can be replaced in the 
future by AI to ensure sustainability. 

 

Figure 6: Trend of number of trials registered by treatment name. 
Taken from https://covid-nma.com/. 
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Figure 7: The diagram on the right describes the network of RCTs evaluating pharmacologic treatments for 
COVID-19 which fulfill criteria that the user selects. The nodes in the diagrams represent the different treatments 
evaluated in these RCTs and the lines represent the direct comparisons made in the studies. When two nodes 
are connected with a line, it means there is at least one study that compares the corresponding treatments. 
Whereas, when they are not connected, it means there is no study comparing them. The size of the nodes is 
proportional to the number of participants allocated to each intervention and the thickness of the lines is 
proportional to the number of studies that compare each pair of treatments. Taken from https://covid-nma.com/. 

 

Figure 8: A Forest Plot comparing two interventions chosen by the user, in this case tocilizumab and 
placebo/standard of care. Taken from https://covid-nma.com/. 

 

 

https://covid-nma.com/
https://covid-nma.com/
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Multi-purpose knowledge graphs 

We found two papers that use KGs for multiple tasks, including literature review and drug repurposing. The first, 
by Chen et al, does a case study on the application possibilities of KGs. The introduction of their paper provides 
an excellent summary of the emergence of KGs in the field of AI. They point out that in the past, KGs have been 
curated manually, but the move towards natural language understanding through semantic technologies has 
accelerated in the past decade, promoting Named Entity Recognition (NER) to a central NLP task. NER has 
been crucial for building and constructing KGs as the primary method of extracting entities and possibly relations 
from free text. Also, tasks such as link prediction, relation extraction, and graph completion on KGs are aided 
by NER. In the early 2000s, biomedical NER relied on feature engineering and graphical models such as Hidden 
Markov Models (HMM) and Conditional Random Fields (CRF), which had poor accuracy compared to the 
current state-of-the art which uses deep learning. Bidirectional Encoder Representations from Transformers 
(BERT) is the foundational work from Google that has made deep-learning-based NER possible. BioBERT is a 
biomedical language representation model based on BERT used by the authors to mine the CORD-19 dataset, 
as well as the PubMed database and PubMed KG. 

To illustrate the utility of KGs, the authors performed several experiments, the most basic of which was compiling 
a list of most-published authors in the CORD-19 dataset. In an experiment using BioBERT, they found that 
BioBERT can easily recognize the common bio-entities with a high occurrence rate in the corpus, but fails to 
recognize rare biomedical terms. They used two metrics to find the strength of KG associations (i.e., weights) 
between source and target nodes: co-occurrence frequency and cosine similarity. Figure 9 shows KGs related 
to remdesivir based on co-occurrence frequency. While this is a promising approach, a major limitation of co-
occurrence frequency is that it cannot reflect the relationship between the source node and the target node well. 
For example, if “A has nothing to do with B” is mentioned often in documents, its co-occurrence frequency will 
be high. Cosine similarity has the benefit of being a normalized metric unlike co-occurrence frequency, but it 
still has the same limitation. 

 

 

Figure 9: Remdesivir-related KGs: associated diseases (left) and associated drugs (right) based on 
cooccurrence frequency. Taken from Chen et al 
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The second paper, by Reese et al, is a framework for producing knowledge graphs that can be customized for 
downstream applications including machine learning tasks, hypothesis-based querying, and browsable user 
interface. For example, a drug repurposing application would make use of protein data linked with approved 
drugs, while a biomarker application could utilize data on gene expression linked with pathways. The authors 
explain that researchers are confronted with a number of technical challenges when trying to use existing data 
to discover actionable knowledge about COVID-19. The data needed to address a given question are typically 
siloed in different databases and employ different identifiers, data formats, and licenses. For example, to 
examine the function of proteins targeted by FDA-approved antiviral drugs, one must download and integrate 
drug, drug target, and FDA approval status data (from Drug Central, for example, in a bespoke TSV format) and 
functional annotations (from, for example, Gene Ontology in GPAD format). Furthermore, many datasets are 
updated periodically, which requires researchers to re-download and re-harmonize data. KGs are a way to 
represent and integrate heterogeneous data and their interrelationships using a hierarchical system such as an 
ontology. This kind of representation is amenable to complex queries (e.g. “which drugs target a host protein 
that interacts with a viral protein?”) and also to graph-based ML techniques.  

Their workflow is divided into three steps: data download (fetch the input data), transform (convert the input 
data to KGX interchange format), and merge (combine all transformed sources). The ingested data are focused 
on sources relevant to drug repurposing for downstream querying and machine learning applications, prioritizing 
drug databases, protein interaction databases, protein function annotations, COVID-19 literature, and related 
ontologies. From the final merged graph, training and test data sets suitable for machine learning applications 
are created. Embiggen, their implementation of node2vec and related algorithms, is applied to this KG to 
generate embeddings, vectors in a low dimensional space which capture the relationships in the KG. Embiggen 
is trained iteratively to identify optimal node2vec hyperparameters (walk length, number of walks, p, q etc.) and 
to then train classifiers (e.g., logistic regression, random forest, support vector machines) that can be used for 
link prediction. The trained classifiers can then be applied to produce actionable knowledge: drug to disease 
links, drug to gene links, and drug to protein links. Besides machine learning, the authors have also used the 
KG for hypothesis-based querying. For example, they have queried the KG to identify host proteins that are 
known to interact with viral proteins, and these are further filtered according to whether these host proteins are 
targets of approved drugs. In the framework created by the authors, each data source is transformed and output 
as a separate graph, which is later combined with graphs for other data sources according to the needs of the 
user. Although the subgraphs from the various data sources (e.g., Drug Central) are produced locally by their 
framework, they could easily incorporate graphs generated by other researchers. The exchange of data via a 
‘KG-Hub’ would eliminate the duplication of effort that occurs when researchers separately transform and 
prepare data, and might also facilitate the formation of a data sharing portal. 

Conclusion 

In this work, we have provided an exploratory review on knowledge graphs in the context of COVID-19. By 
providing links between disparate datasets that are stuck in silos, KGs enable the user to effectively search the 
overwhelming volume of COVID-19 research and gain actionable insight which would either be extremely 
tedious or impossible to achieve in the absence of such emerging uses of AI. 
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